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Conversion Factors

U.S. customary units to International System of Units

Multiply By To obtain

Length
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

square mile (mi*) 2.590 square kilometer (km?)

Volume
acre-foot (acre-ft) 4,3559.9 cubic foot (ft*)

Flow rate
cubic foot per second (ft*/s) 0.02832 cubic meter per second (m?/s)
Hydraulic gradient

foot per mile (ft/mi) 0.1894 meter per kilometer (m/km)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8x°C) + 32.

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C=(°F-32)/18.

Abbreviations

AEP annual exceedance probability

DA drainage area, in square miles (referred to as DRNAREA in StreamStats)

GIS geographical information system

GLS generalized least-squares

HUC hydrologic unit code

LPIII log-Pearson Type llI

NLCD National Land Cover Dataset

OLS ordinary least-squares

PeakFQ U.S. Geological Survey peak-flow frequency analysis program

PILF potentially influential low flood

SL; & channel slope, in feet per mile, determined by the 10-85 method (referred to as
CSL1085LFP in StreamStats)

USGS U.S. Geological Survey

W percentage of the basin classified in the 1992 National Land Cover Dataset as
open water and wetlands (referred to as LC92STOR in StreamStats)

WREG weighted-multiple-linear regression



Flood-Frequency Estimates for Ohio Streamgages Based
on Data through Water Year 2015 and Techniques for
Estimating Flood-Frequency Characteristics of Rural,

Unregulated Ohio Streams

By G.F. Koltun

Abstract

Estimates of the magnitudes of annual peak streamflows
with annual exceedance probabilities of 0.5, 0.2, 0.1, 0.04,
0.02, 0.01, and 0.002 (equivalent to recurrence intervals of
2-,5-,10-, 25-, 50-, 100-, and 500-years, respectively) were
computed for 391 streamgages in Ohio and adjacent states
based on data collected through the 2015 water year. The
flood-frequency estimates were computed following guidance
outlined in Bulletin 17C, developed by the Advisory Commit-
tee on Water Information. The Bulletin 17C guidelines retain
the basic statistical framework of the superseded Bulletin 17B
guidelines; however, the Bulletin 17C guidelines add several
enhancements including an improved method of moments
approach for fitting the log-Pearson Type III (LPIII) distribu-
tion to the flood peaks (called the expected moments algo-
rithm), a generalization of the Grubbs Beck low-outlier test

called the Multiple Grubbs Beck test) that permits identifica-
tion of multiple potentially influential low floods, and new
methods for estimating regional skew and uncertainty.

Equations for estimating flood-frequency characteristics
at ungaged sites on rural, unregulated streams in Ohio were
developed with a two-step process involving ordinary least-
squares and generalized least-squares regression techniques.
Data from 333 streamgages with 10 or more years of unregu-
lated record were screened for redundancy and a regression
dataset was selected that was composed of flood-frequency
and basin-characteristic data for 275 streamgages in Ohio and
adjacent states. Two sets of equations were developed—one
set, referred to as the “simple model,” uses regression region
and drainage area as regressor variables, and a second set,
referred to as the “full model,” uses regression region, drain-
age area, main-channel slope, and the percentage of the water-
shed covered by water and wetlands as regressor variables.

The average standard errors of prediction ranged from
about 40.5 to 46.5 percent for the simple-model equations
and from about 37.2 to 40.3 percent for the full-model
equations. For sites meeting the rural, unregulated criteria,

flood-frequency estimates determined by means of LPIII
analyses are reported along with weighted flood-frequency
estimates, computed as a function of the LPIII estimates and
the regression estimates. For sites with homogenous periods
of regulation, flood-frequency estimates determined by means
of LPIII analyses are reported. Ninety-five percent confidence
limits are reported for all estimates.

Values of regressor variables were determined from
digital spatial datasets by means of a geographic information
system (GIS). The GIS datasets and the new full-model equa-
tions have been incorporated into Ohio’s StreamStats applica-
tion, a web-based, GIS-backed system designed to facilitate
the estimation of streamflow statistics at ungaged locations on
streams.

Seasonal patterns in peak flows were assessed for
295 streamgages in Ohio. Annual peak flows occurred most
frequently between January and April, with March having
the highest frequency of occurrence. The month with the
fewest number of annual peaks was October. Peak-of-record
flows occurred most frequently in March, followed by Janu-
ary (months in which two of Ohio’s most severe widespread
floods in recent history occurred). None of the peak-of-
record flows occurred in October and only two occurred in
November.

Temporal trend in annual peak flows were assessed for
133 streamgages on unregulated streams in Ohio with 30 or
more years of systematic record. Trends were assessed by
computing the rank correlation (as measured with the two-
sided Kendall’s tau statistic) between time and annual peak
flows. Weak but statistically significant trends were indicated
at 15 of the 133 streamgages. Of the 15 streamgages with
significant trend in annual peak flows, 12 had an upward trend
(positive tau) and 3 had a downward trend (negative tau). All
12 streamgages with positive tau values were at latitudes north
of 40°33', and streamgages with negative tau values were at
latitudes south of 40°33'.
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Introduction

Data on the magnitudes of flood-peak discharges with
selected annual exceedance probabilities (AEPs) are com-
monly referred to as flood-frequency data. The use of the term
“frequency” results from a common interpretation of the recip-
rocal of the AEP as an average frequency of recurrence during
a long period of time. For example, a flood-peak discharge that
has a 0.01 (1-percent) AEP is said to be equaled or exceeded,
on average, once every 100 years (and consequently is called
a “100-year flood”). Although many people consider the fre-
quency concept easier to grasp than the probability concept, to
understand that the frequency concept is based on a long-term
average is important. Therefore, the occurrence of a “100-
year flood” in a given year does not preclude the occurrence
of a flood of equal or greater magnitude in the next 100 years

or even in the next year). Because of misconceptions associ-
ated with reported N-year (where N is a number) recurrence
intervals, recent literature has migrated toward reporting AEPs
instead. Consequently, what were formerly reported as 2-, 5-,
10-, 25-, 50-, 100-, and 500-year recurrence intervals are now
reported as 0.5, 0.2, 0.1, 0.04, 0.02, 0.01, and 0.002 AEPs,
respectively.

Flood-frequency data have many uses. For example, the
data are used in the design of bridges, culverts, dams, and
spillways to ensure that those structures contain or convey
design flow conditions without failure or unnecessary flood-
ing. Flood-frequency data are also used in flood-insurance
studies to determine the elevation and boundaries of the water
surface associated with prescribed peak-flow conditions.
Ultimately, decisions made on the basis of these data can have
significant monetary impact on government agencies and
private citizens and, at times, can make the difference between
life and death.

The most recent report presenting flood-frequency data
and estimation techniques applicable to Ohio (fig. 1) streams
was published by Koltun and others (2006) and was based
on streamflow data collected through the 2001 water year

a water year is the period from October 1 through Septem-
ber 30 and is designated by the year in which it ends). Since
water year 2001, new methods for estimating flood-frequency
statistics and regional skew have been developed, more than
10 years of additional peak-flow data have been measured at
some previously described locations, and sufficient data have
become available to compute flood-frequency characteristics
for other locations for which flood-frequency characteristics
have not been previously determined. Given the new meth-
odology, the availability of the additional peak-flow data and
considering the economic and safety-related importance of
flood-frequency information and estimation techniques, the
U.S. Geological Survey (USGS), in cooperation with the Ohio
Department of Transportation, have cooperated to develop
new flood-frequency estimates and methods for estimating
flood-peak discharges of rural, unregulated streams in Ohio.

Description of Study Area

The study area includes the State of Ohio and small por-
tions of Indiana, Michigan, and Pennsylvania (fig. 1). Ohio has
a total area of approximately 44,826 square miles (mi? with
approximately 3,965 mi? of that area covered by perennial
water (U.S. Census Bureau, 2018a). Based on a classification
of land cover from Landsat satellite data circa 2011 (Homer
and others, 2015), agriculture was the dominant land cover in
Ohio comprising more than 46 percent of the State followed
by forest (28.5 percent) and developed (13.5 percent) land
covers. According to Sanders (2001), Ohio has more than
60,000 miles of streams.

About two-thirds of Ohio was glaciated during the last
great Ice Age (Ohio Department of Natural Resources, 2019).
Overall topographic relief across the State of Ohio is benign
with relatively shallow elevation gradients (Tomlinson and
others, 2013). Tomlinson and others (2013) concluded that
orographic enhancement or depletion of rainfall is not a major
factor in Ohio.

Ohio has a humid continental climate characterized
by large seasonal temperature changes and generally ample
precipitation derived from frontal and convective storms.
Between 2001 and 2015, statewide average annual tempera-
ture and rainfall totals were 51.6 degrees Fahrenheit and
41.7 inches, respectively (National Oceanic and Atmospheric
Administration, National Centers for Environmental Informa-
tion, 2018). By comparison, the average annual temperatures
and rainfall totals for Ohio for the 30-year period from 1985 to
2015 were 51.4 degrees Fahrenheit and 40.2 inches, respec-
tively (National Oceanic and Atmospheric Administration,
National Centers for Environmental Information, 2018). The
reader is referred to Tomlinson and others (2013) for a rela-
tively detailed discussion of the weather and climate of Ohio,
particularly as the weather and climate relate to the production
of extreme rainfall.

As of July 1, 2017, the U.S. Census Bureau (2018b)
estimated that the resident population of Ohio was 11,658,609,
making Ohio the seventh most populated State in the United
States. According to the U.S. Census Bureau (2018c), (as of
July 1, 2017) Columbus was the most populated city in Ohio,
followed by Cleveland and then Cincinnati (fig. 1).

Purpose and Scope

The purpose of this report is to describe the results of
a study to (1) estimate flood-frequency characteristics for
selected streamgages in Ohio and adjacent states based on data
collected through water year 2015; (2) develop and present
techniques for estimating flood-frequency characteristics of
rural, unregulated streams in Ohio; and (3) implement the
estimation techniques in the Ohio StreamStats application.
This report supersedes USGS Water-Resources Investigations
Report 2006-5312 (Koltun and others, 2006) in that it pro-
vides revised flood-frequency estimates for streamgages and
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presents new methods and equations for estimating flood-fre-
quency characteristics of rural, unregulated streams in Ohio.

Previous Investigations

In several previous reports, flood-frequency data have
been tabulated and methods have been presented for esti-
mating flood-frequency characteristics of rural, unregulated
streams in Ohio (Cross, 1946; Cross and Webber, 1959; Cross
and Mayo, 1969; Webber and Bartlett, 1977; Koltun and Rob-
erts, 1990; Koltun, 2003; and Koltun and others, 2006). The
most recent of those reports (Koltun and others, 2006) marked
the first use in Ohio of a web-based application called Stream-
Stats to compute values of regressor variables and subsequent
estimates of peak flows associated with selected AEPs.

Seasonal Patterns of Peak Flows

Annual peak flows can occur during any month on Ohio
streams; however, the occurrence of annual peak flows is more
common in some months than others. Based on a frequency
analysis of more than 9,500 unregulated annual peak flows
observed at 295 streamgages in Ohio through the 2015 water
year (fig. 2), annual peak flows in Ohio occurred most often
(59.7 percent of the observations) in the 4-month period
between January and April, with March having the highest fre-
quency of occurrence (17.3 percent of the observations). The
month with the fewest annual peaks (1.1 percent) was October.
Peak flows for which the month of occurrence was not listed
were excluded.

20

EXPLANATION

Number of annual peak flows is 9,508

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
Month

Frequency of occurrence of unregulated annual peak flows, in percent

Figure 2.
montbh.

Frequency of occurrence of annual peak flows by

A frequency analysis of the largest recorded annual peak
flow (peak-of-record flows) at each of the 295 streamgages
indicated that the peak-of-record flows occurred most fre-
quently in March (20.7 percent of the observations), followed
by January (19.3 percent of the observations) (fig. 3). March
and January coincide with months in which two of Ohio’s
most severe widespread floods in recent history (the March
1913 and January 1959 floods) occurred. July and June ranked
third (13.6 percent of observations) and fourth (11.9 percent of
observations) with respect to the frequency of peak-of-record
flows. No peak-of-record flows occurred in October and only
two peak-of-record flows (0.7 percent of the observations)
occurred in November (fig. 3).

The monthly peak-of-record frequency characteristics
separated into two classes as a function of drainage area
is shown in figure 3, with one class representing sites with
drainage areas less than 20 mi” and the other class represent-
ing sites with drainage areas greater than 20 mi®. The smaller
drainages peak-of-record flows occurred most frequently in
June followed by July (fig. 3). That result likely reflects factors
related to basin size and period of record. The peak flows of
the smaller basins are likely to be influenced more than larger
basins by summer-time convective storms that can produce
high rainfall amounts with limited spatial extent. In addition,
the smaller basins tend to be more recent additions to the gage
network, with very few gages on smaller basins having record
earlier than the 1940s (and so their records do not include the
March 1913 flood).

Magnitude and Frequency of Floods at
Gaged Sites

Flood-frequency analyses were completed using
annual peak streamflow data measured at 391 streamgages.
Although, this report is focused on Ohio, data from a total of
39 streamgages near the State borders with Michigan, Indiana,
Kentucky, West Virginia, and Pennsylvania were used in this
study (fig. 4).

Separate flood-frequency analyses were done for regu-
lated and unregulated peak-flow records. For the purposes of
this study, regulated records include any records where the
peak streamflows are thought to be substantially altered from
what would be expected for a “natural” stream. Regulation
of peak flows can occur because of obvious forms of regula-
tion such as operation of dams, but also can occur because of
less obvious factors such as urbanization, channelization, and
mining. Determination of whether peak flows were affected by
regulation was based primarily on peak-flow qualifier codes in
the USGS peak-flow database, but also on USGS streamgage
descriptions and other supporting documentation contained
in USGS files. Unless the streamgage description or other
available information provided reasonable evidence otherwise,
the codes in the peak-flow database were used to identify and
classify peak-flow regulation. Streamgages with peak-flow
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Frequency of occurrence of peak-of-record flows, in percent

Jan. Feb. Mar. Apr.

May

Month

codes of 5 (indicating discharge affected to unknown degree
by regulation or diversion), 6 (indicating discharge affected
by regulation or diversion), and C (indicating all or part of
the record was affected by urbanization, mining, agricultural
changes, channelization or other) were classified as regu-
lated. Some peak flows were coded as estimated (code 2) or
as maximum daily averages (code 1). These peak flows were
included in the flood-frequency analyses without adjustment.
Peak flows affected by dam failure (code 3) were not used in
any of the flood-frequency analyses. The peakflow records are
maintained in a database and are publicly available online at
the USGS National Water Information System: Web Interface
(U.S. Geological Survey, 2018).

Some streamgages had peak-flow records for water
years prior to the onset of regulation. The records from those
streamgages were divided into unregulated and regulated
periods, with separate flood-frequency analyses completed
on each period with 10 or more years of record. There were
333 streamgages with 10 or more years of unregulated record
(fig. 4; table 1.1) and 82 streamgages with 10 or more years of
regulated (or potentially regulated) record (fig. 5; table 1.2).
Twenty-four of the streamgages had 10 or more years of regu-
lated and unregulated record. Of the 82 streamgages, 5 did not
have codes in the peak-flow database indicating regulation;
however, land-cover characteristics indicate the potential that
peak flows may have been affected by urbanization

Food-frequency analyses were completed using ver-
sion 7.1 of the USGS peak-flow frequency analysis pro-
gram (PeakFQ) (Veilleux and others, 2014) following the

June July  Aug.

R EXPLANATION

[Number of streamgages is 295;
108 are less than 20 square miles and
187 are greater than 20 square miles]

- Streamgages with drainage areas
greater than 20 square miles

- Streamgages with drainage areas
less than 20 square miles

Figure 3. Frequency of
occurrence of peak-of-record
flows, by month, for streamgages
with drainage areas greater than
and less than 20 square miles.

Sept.  Oct.  Now. Dec.

methodology described in Bulletin 17C (England and others,
2018). The Bulletin 17C guidelines retain the basic statistical
framework of the superseded Bulletin 17B guidelines (Inter-

agency Advisory Committee on Water Data, 1982); however,
Bulletin 17C guidelines include the following enhancements:

 an improved method-of-moments approach for fitting
the log-Pearson Type III (LPIII) distribution to the
flood peaks (called the expected moments algorithm
[Cohn and others, 1997]) that can accommodate inter-
val estimates of peak flow, censored estimates of peak
flow, and multiple thresholds of observation;

* a generalization of the Grubbs Beck low-outlier test
(called the Multiple Grubbs Beck test [Cohn and
others, 2013]) that permits identification of multiple
potentially influential low floods (PILFs); and

» new methods for estimating regional skew and uncer-
tainty (Veilleux and others, 2011).

Systematic data are distinguished from historical data in
the flood-frequency analyses. Annual peak-flow data collected
as part of the systematic operation of a streamgage are called
“systematic data.” “Historical data” can take on several forms
including (1) observations of large flows that occurred outside
of the period of systematic record, (2) knowledge that one
or more floods within the period of systematic record are the
largest in a longer period, and (3) knowledge that flood mag-
nitudes did not exceed a given value during a period outside
of the period of systematic record. The period of systematic
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record together with the intervening years between the system-
atic and historical peak flows define the “historical period” of
the streamgage.

As was true with Bulletin 17B, the Bulletin 17C meth-
odology prescribes the use of a LPIII distribution to fit the
logarithms of annual peak-flow data as a function of the mean,
standard deviation, and coefficient of skewness of the loga-
rithms of annual peak flows using the following equation:

Qp:)?+KpS (1)

where, ~
’ is estimated P-percent AEP flow, in cubic
foot per second (ft¥/s), where P equals the
probability that the annual peak flow will
be equaled or exceeded in any given year;
is the mean of the logarithms of the annual
peak flows;

P is a frequency factor dependent on the AEP
and the coefficient of skewness of the log-
transformed annual peak-flow series; and

S is the standard deviation of the log-
transformed annual peak-flow series.

>

Regional Skew

Regional skew information should be considered and
weighted appropriately with the station skew coefficient to
provide an improved estimate of skewness (England and
others, 2018). The station and regional skew coefficients
are weighted inversely proportional to their individual mean
square errors by the following equation:

 MSE_(G)+ MSE(G) @
" MSE + MSE,
where
Gy is the weighted skew coefficient,
MSE, is the mean square error of the regional skew,
G is the station skew coefficient,
MSE,, is the mean square error of the station skew,
and
G is the regional skew coefficient.

Under Bulletin 17B guidelines (Interagency Advisory
Committee on Water Data, 1982), a generalized skew coef-
ficient, determined from a map of skew coefficients prepared
for the United States, could be used to compute the weighted
skew coefficient. For this study, the regional skew coefficient
that was used was developed for a region covering most of
hydrologic unit code (HUC) region 04 and part of HUC region
05 (including parts of Illinois, Indiana, Kentucky, Michigan,
Minnesota, New York, Ohio, Pennsylvania, Vermont, West
Virginia, and Wisconsin) (U.S. Geological Survey, 2019). The
regional skew was determined from a Bayesian-regression
analysis of station skew coefficients and basin characteristics

for 368 long-term streamgages in HUC regions 04 and 05, and
the regional skew development is described in detail in Veil-
leux and Wagner (in press). None of the basin characteristics
tested were statistically significant and explained an apprecia-
ble amount of the spatial variation in skewness; consequently,
a constant skew coefficient of 0.086 was determined to be

the best model for the region. The mean square error of the
constant skew model is 0.13, which is less than one-half the
0.302 mean square error of the Bulletin 17B generalized skew
map and is approximately equal to a generalized standard error
0f 0.3606.

For unregulated peak-flow records in this study, the
regional skew coefficient of 0.086 and station skew coef-
ficients from the streamgage records were used to compute
weighted skews, which in turn were used to compute the
flood-frequency estimates. Flood-frequency estimates for
regulated peak-flow records were based only on station skews
because of the possibility that the skewness of annual peaks
at regulated streamgages could differ substantially from those
at unregulated streamgages. Summaries of flood-frequency-
analysis-related characteristics of the unregulated and regu-
lated streamgage records are listed in table 1.3 and table 1.4,
respectively. Flood-frequency estimates for unregulated and
regulated records are reported in table 1 and table 2 (available
for download at https://doi.org/10.3133/5ir20195018), respec-
tively. Flood-frequency estimates are reported for regulated
records only in those cases where the LPIII curve was judged
to provide a reasonably good fit to the observed peaks. The
reader should be mindful that changes in regulation subse-
quent to the period of analysis could appreciably change the
flood-frequency characteristics of regulated streams.

Flow Intervals and Perception Thresholds

The expected moments algorithm can account for various
forms of uncertainty in peak-flow estimates. For every year in
the historical period (including gaps in the systematic record),
a flow interval (defined by an upper and lower bound for the
peak flow) must be provided. For most peak flows during the
systematic period, the default upper and lower bounds equal
the observed peak flow; and, for most water years when no
information has been recorded, the default upper and lower
bounds are infinity and zero, respectively. If a peak flow has
definable uncertainty, the range of plausible flows for that peak
can be entered as the upper and lower bounds for the flow
interval.

Along with flow intervals, the expected moments algo-
rithm technique also requires that a perception threshold be
entered for every year. Perception thresholds identify the range
of flows that would have been measured or recorded if they
had occurred. Generally, for the systematic record, the range
of perception thresholds is from zero to infinity (because all
annual peak flows are assumed to have been measured during
the period of systematic data collection). At some streamgages

for example, crest-stage gages) flows can be determined



only when water in the stream reaches a certain minimum
measurable level. In some years, the water may not reach that
minimum level, consequently the lower perception threshold
is the flow associated with the minimum measurable water
level. Perception thresholds also are set for the ungaged period
within the historical period. Generally, the lower threshold

is set to the minimum flow that the analyst thinks would be
measured or recorded if the minimum flow had occurred (even
though the streamgage was not being operated), and the upper
threshold is set to infinity.

Some peak flows may be classified as “opportunistic.”
Opportunistic peak flows are peak flows measured outside of
the systematic record based on factors other than exceedance
of a perception threshold. Because the observation of opportu-
nistic peak flows is not truly random, their sampling proper-
ties are unknown. Consequently, opportunistic peaks were
not included in the flood-frequency analyses because of the
potential that those peaks will bias the sample.

Nondefault flow intervals used in the analyses of unregu-
lated streamgage records are reported in table 1.5. No non-
default flow intervals were used in the analyses of regulated
streamgage records. Perception thresholds used in the analyses
of unregulated and regulated streamgage records are reported
in table 1.6 and table 1.7, respectively. Inputs to PeakFQ,
which include all flow and perceptions intervals used in this
study, are presented in Koltun (2019a). The report files from
the PeakFQ analyses also are available in Koltun (2019a).

Tests for Potentially Influential Low Floods

In typical flood-frequency analyses, most of the interest
is in large floods (floods with small AEPs), which are near the
upper end of the peak-flow distribution. Sometimes peak-flow
records contain low-magnitude peaks that depart significantly
from the trend of the higher-flow values (low outliers). These
PILFs can have a large influence on frequency estimates in the
upper end of the peak-flow distribution. The Multiple Grubbs
Beck test (Cohn and others, 2013) was used to identify PILFs
that were then censored from the frequency distribution.
Censoring the PILFs typically results in improved agreement
between the high end (where AEPs are small) of the observed
frequency distribution and the high end of the estimated
frequency distribution. In some instances, censoring the PILFs
may degrade the fit at the low end (where AEPs are large) of
the frequency distribution. Low outlier thresholds used in the
analyses of unregulated and regulated streamgage records are
reported in table 1.3 and table 1.4.

Tests for Temporal Trends in Flood Magnitudes

Prior to completing the flood-frequency analyses, unregu-
lated data from 333 streamgages in Ohio and adjacent states
with 10 or more years of unregulated record were tested for
temporal trends by computing Kendall’s tau, a nonparamet-
ric measure of correlation. These tests were done because a
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necessary assumption for the LPIII analysis is that the peak-
flow data are a reliable and representative sample of random
homogeneous events (Interagency Advisory Committee on
Water Data, 1982). The trends were assessed by computing
the two-sided Kendall’s tau statistic and associated p-values.
Kendall’s tau is a rank correlation coefficient that, in this case,
provides a measure of the correlation between the rank order
of time and the rank order of peak flows. The p-values indicate
the probability that tau is equal to zero. A Kendall’s tau of
1 indicates a perfect monotonically upward trend and a -1
indicates a perfect monotonically downward trend; a tau of 0
indicates no trend.

An alpha level of 0.05 (5 percent) was used for tests of
significance in this study. Statistically significant (p-value
less than or equal to 0.05) trends in annual peak flows were
determined for 37 (about 11 percent) of the streamgages with
data from approximately two-thirds of the 37 streamgages
exhibiting positive trends. The median absolute tau value for
the streamgages with significant trend was 0.32, indicating
weak trend (Mukaka, 2012), and the 10 streamgages with
the largest absolute tau values all had short records (averag-
ing less than 13 years). The 37 streamgages (30 streamgages
in Ohio and 7 in surrounding states) with significant trends
were researched to determine if a cause for trends could be
identified. The cause could not be determined with reasonable
certainty, so the trends were assumed to be due to chance or to
result from a short time sample that was not representative of a
long-term trend. Although some of the identified trends possi-
bly could reflect a changing climate, data from all 37 stream-
flow streamgages with statistically significant trend were
retained in the analysis. The data were all retained because of
uncertainty about causation and a lack of guidance on how to
account for climate change on flood frequency. Kendall’s tau
values and their associated p-values are reported in table 1.3
and table 1.4 for the unregulated and regulated streamgage
records, respectively.

Long-Term Trends in Annual Peak Flows

Annual peak-flow data for 133 streamgages on unregu-
lated streams in Ohio with 30 or more years of systematic
record through the 2015 water year were analyzed for
long-term trends by computing Kendall’s tau (as previously
described). Thirty years of record was chosen as a minimum
for this analysis in an attempt to minimize identification of
spurious trends resulting from an unrepresentative sampling
period. Fifteen of the 133 tau values (about 11 percent) had
associated p-values less than or equal to 0.05, indicating
statistically significant trends. The median number of system-
atic peaks for the 15 streamgages was 75 (average of about
68) and all except 4 of the streamgages had records extending
through the 2015 water year. The tau values for those 15 sites
ranged from -0.317 to 0.246, indicating the trends (although
statistically significant) were weak. Of the 15 streamgages
with significant trend, 12 had positive tau values (indicating
an upward trend in annual peak flows) and 3 sites had negative
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tau values (indicating a downward trend). All 12 streamgages
with positive tau values were at latitudes north of 40°33', and

streamgages with negative tau values were at latitudes south of

40°33' (fig. 6).

Development of Regional Regression
Equations

Regional regression equations for estimating flood-peak
discharges at ungaged sites on rural, unregulated streams were
developed with a two-step process involving ordinary least-
squares (OLS) regression and generalized least-squares (GLS)
regression techniques. GLS regression equations were deter-
mined because Stedinger and Tasker (1985) determined that,
compared to OLS regression, GLS regression provides more
accurate parameter (regression coefficient) estimates, better
estimates of the accuracy with which the regression model’s
coefficients are estimated, and almost unbiased estimates of
the model error.

Because of the long computer execution time associated
with GLS regression analyses, OLS regression techniques
were used in the first step to determine the “best” models relat-
ing basin characteristics to peak discharge estimates for each
AEP. In the second step, the regressor variables chosen on the
basis of OLS regression were used in GLS regression analyses
to develop equations that will be used for predictive purposes.
Prior to completing regression analyses, tests were done to
identify streamgages that provided potentially redundant infor-
mation. A model archive of the regression analyses is available
in Koltun (2019b).

Tests for Redundancy

When two or more streamgages effectively provide
nearly the same information to a regression model, the
streamgages are said to provide redundant information. Instead
of providing independent spatial observations that depict how
drainage basin characteristics are related to flood magnitudes
with a given AEP, these streamgages exhibit nearly the same
hydrologic response to a given storm and, thus, effectively
represent only one spatial observation. Consequently, when
some streamgages provide redundant information, a statistical
analysis using the redundant observations incorrectly repre-
sents the information content in the regional dataset (Gru-
ber and Stedinger, 2008). To determine if two streamgages
provided potentially redundant information, the following two
types of information were considered: (1) the distance between
basins centroids and (2) the ratios of the basin drainage areas.

A standardized distance was used in part to determine the
likelihood that the streamgages provide redundant informa-
tion. The standardized distance between two streamgages (i
and j), SD,, is defined as follows:

D,

y

5By = [0.5(D4, +DA4,) )

Dl,j is the distance, in miles, between centroids of
basin 7 and basin j;

where

DA, is the drainage area in square miles at site ;
and
DA is the drainage area in square miles at site ;.

Along with the standardized distance, a drainage area
ratio was used to determine if the drainages associated with
streamgages were sufficiently similar in location and size to
conclude that the streamgages may provide redundant infor-
mation for the purposes of developing a regional hydrologic
model.

The drainage area ratio, DAR, is defined as follows:

e( ‘log(DAl /D4, )\)

DAR (4)
where

DA, is the drainage area at site i, and

DA, 1is the drainage area at site j.

Recen{ studies (Veilleux, 2009; Mastin and others, 2016)
indicate that screening thresholds of standardized distance
less than or equal to 0.50 combined with drainage area ratio
less than or equal to 5 are appropriate for identifying sites
with potentially redundant information; consequently, those
thresholds were adopted for this study. All possible combi-
nations of streamgage pairs from the 333 streamgages with
10 or more years of unregulated record were considered in
the redundancy analysis. All streamgage pairs meeting the
threshold criteria were investigated and, if deemed poten-
tially redundant, one streamgage from the pair was removed
from the regression dataset. Of the 333 streamgages with 10
or more years of unregulated record, 56 (about 17 percent)
were removed from the regression dataset because of poten-
tial redundancy. Another 2 streamgages were not included in
the regression dataset for other reasons, leaving a regression
dataset composed of data for 275 streamgages. The number
of annual peaks on which flood-frequency results for the
275 streamgages was based ranged from 10 to 103, with a
median value of 26 annual peaks.

Ordinary Least-Square Regression

Koltun (2003) previously tested 20 basin characteristics
as explanatory variables and determined 5 to be most useful
for predicting flood-frequency characteristics in Ohio. Those
five characteristics included drainage area (DA), main-channel
slope determined by the 10-85 method (SL,, ) (described
in Benson, 1962), the percentage of the basin area classified
in the 1992 National Land Cover Dataset (NLCD) (Vogel-
mann and others, 2001) as open water and wetlands (W),
and binary regression region indicator variables (OHREGA
and OHREGC). In the Ohio StreamStats application,
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drainage area, main-channel slope determined by the 10-85
method, and the percentage of the basin area classified in the
1992 NLCD as open water are referred to as DRNAREA,
CSL1085LFP, and LC92STOR, respectively. As described in
Koltun and others (2006), the drainage into and within Ohio
was divided into three regression regions (A, B, and C) as
shown in figure 1.

The binary regression region indicator variables were
assigned the combined values listed in the following table
based on the regression region in which the site is located.

Region OHREGA OHREGC
A 1 0
B 0 0
C 0 1

Streamgages in border states that are on streams that do not
drain into Ohio were assigned regression region codes based
on the regression region in the closest proximity.

For streamgages in Ohio, the drainage areas and main-
channel slopes were computed with the Ohio StreamStats
application (Koltun and others, 2006). For streamgages
outside Ohio, the drainage areas and main-channel slopes
were computed, when possible, with the applicable state
StreamStats applications (Ries and others, 2017); otherwise,
the drainage areas and main-channel slopes were obtained
from other USGS sources such as the National Water Informa-
tion System: Web Interface, the GAGES-II dataset (Falcone,
2017), or publications.

The potential explanatory variables that were previously
tested by Koltun and others (2006) and excluded from the
regression equations were not retested for this study; how-
ever, the explanatory variables that were previously tested and
used in the regression equations were retested. Consideration
was given to updating W (the percentage of the basin classi-
fied in the 1992 National Land Cover Dataset as open water
and wetlands) based on a more recent land cover dataset;
however, because the bulk of the record at long-term gaging
stations predates 1992, the decision was made that values of W
computed based on the 1992 NLCD are still relevant (in that
values representative of the early 1990s would be more central
to the period of record at long-term gaging stations than a later
measure of ).

The following new explanatory variables were added for
testing: (1) LC11IMP, the percentage of impervious area deter-
mined from the 2011 NLCD impervious dataset (Homer and
others, 2015) and (2) LC11DEV, the percentage of developed
land covered by land cover classes 21-24 in the 2011 NLCD.
All explanatory variables, except for the regression region
indicator variables, were log,  transformed and 1.0 was added
to the value of LC11IMP, LC11DEV, and W before log trans-
formation. Applicable basin characteristics of all sites with 10
or more years of unregulated record are listed in table 1.1.

Selection of regressor variables for use in the final model
was based on the following criteria:

* The choice of regressor variables, and the signs and
magnitudes of their associated regression coefficients
had to be hydrologically plausible in the context of
peak flows. This criterion took precedence over all
other criteria.

 All regressor variables had to be statistically significant
at the 95-percent confidence level.

» The choice of regressor variables, with the constraints
of the first two criteria, had to minimize the average
variance of prediction and maximize the pseudo coef-
ficient of determination (pseudo R?, a measure of the
proportion of the variation in the dependent variable
accounted for by the regression equation after remov-
ing the effect of the time-sampling error [Griffis and
Stedinger, 2007]).

The new explanatory variables (LC1/IMP and LC1IDEYV)
were not statistically significant. Evaluation of the signifi-
cance of LC11IMP was based on data from only 261 of the
275 streamgages (including all of the Ohio streamgages) in
the regression dataset, because that characteristic could be
determined with relative ease for that subset. If significance
tests for LC71IMP had indicated statistical significance (as
indicated by a p-value less than or equal to 0.05) or near
statistical significance (as indicated by a p-value less than or
equal to 0.1), then that basin characteristic would have been
determined for the remaining 14 streamgages and retested.
Although neither LC11IMP nor LC11DEV were statistically
significant, the values associated with each streamgage were
reviewed to assess the potential for urban influence on peaks.

Because LC11IMP and LC1IDEYV reflect conditions
circa 2011, they are not necessarily indicative of the level
of urbanization associated with a streamgage’s record. For
example, a streamgage may have LC1/IMP and LC1IDEV
values that indicate a high percentage of impervious area and
development circa 2011; however, the peak-flow record for
that streamgage may have ended in the 1980s. In that case,
urbanization may not have been an issue during the period of
record.

The records for five streamgages (USGS station numbers
03115973, 03226850, 03228000, 03262750, and 03263100)
with peak flows that are not currently classified as regulated
were treated as being regulated in this study because the
streamgages had high LC1//MP (greater than 30 percent)
and LCIIDEV (greater than 80 percent) values, and no clear
evidence indicated that the level of urbanization during the
periods of record would not have been sufficient to affect at
least some of the peak flows.

Ultimately, the regressor variables used in the equations
reported by Koltun and others (2006) proved to be statistically
significant in explaining the variation in the flood-frequency
estimates determined for this study. Consequently, those
same regressor variables were carried forward to the GLS
regression analyses. The values of the regressor variables for
unregulated streamgages discussed in this report are listed in



table 1.1. Summary statistics of the regressor variables for the
275 streamgages in the regression dataset are listed in table 3.

Generalized Least-Squares Regression

The regressor variables selected in the OLS regression
analyses were used to develop GLS regression equations
for estimating flood-frequency characteristics. In addition, a
second set of equations was developed for a model that used
only the regression region codes and drainage area as regres-
sor variables. To facilitate future discussion, the equations that
use the full suite of regressor variables will be referred to as
the “full model” equations, and the equations that use only
the regression region code and drainage area variables will be
referred to as the “simple model” equations.

The improvements afforded by the GLS regression tech-
nique (relative to the OLS regression technique) result from
the fact that the GLS regression technique takes into consider-
ation the variance and spatial correlation structure of the peak
flows and weights each observation accordingly (Tasker and
others, 1986). In addition, the time-sampling error in the esti-
mated peak flow is accounted for in evaluating the accuracy of
the regression equation. In contrast, OLS regression assumes
equal reliability and variance and no cross-correlation between
peak-flow records at the streamgages and, therefore, assigns
equal weights to each of the peak-flow estimates.

Spatial correlation of annual peak flows for paired sites
was estimated in the GLS analysis using the following correla-
tion-smoothing function as originally described by Tasker and
Stedinger (1989):
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;i/ _ gl (5)
where
ri is the estimated linear cross-correlation of the

time series of annual peak-flow values at
sites i and j,

d, s the distance in miles between sites i and /,
and

aand §  are dimensionless parameters.

The correlation-smoothing function is determined first
by plotting distances between pairs of sites versus Pearson’s
r describing the linear correlation between the logarithms of
annual peak flows at each site pair. The values that are plot-
ted were determined by choosing data for site pairs with a
minimum number of concurrent years of record (a minimum
of 30 years of concurrent record was used for the evaluation
in this study). The scatter plot was overlaid with a smooth
line representing the correlation-smoothing function (eq. 5)
and then the shape of that line was adjusted by changing
two parameters, o and 6, until a “best fit” was obtained.

The weighted-multiple-linear regression (WREG) program
computes a Nash-Sutcliffe efficiency coefficient (Nash and
Sutcliffe, 1970) for each parameter set to help evaluate the

fit. An o 0f 0.002 and 6 of 0.98 were determined to provide a
good fit to the data and, therefore, were used for the smoothing
function.

The GLS regression equations were determined by
application of version 2.02 of the USGS program WREG
(Farmer, 2018), which is an implementation written in
the R statistical language (R Core Team, 2017) of the

Table 3. Summary statistics of regressor variables in the regression calibration dataset.

[DA4, drainage area; mi*, square mile; SL,, .,
water and wetlands in the 1992 National Landcover Dataset]

channel slope determined by the 10-85 method; ft/mi, foot per mile; 17, the percentage of the basin classified as

. o Regressor variable Number of
Region Statistic - - .
DA (mi?) L,, 5 (ft/mi) W (percent) observations

A Maximum 5,989 516 25.35 175
Minimum 0.04 1.53 0.00
Mean 195 48.2 2.31
Median 39.2 13.2 0.79

B Maximum 6,309 457 7.10 68
Minimum 0.04 1.21 0.00
Mean 242 25.2 1.44
Median 38.3 8.20 1.04

C Maximum 2,514 131 1.23 32
Minimum 0.26 3.24 0.00
Mean 170 37.1 0.33
Median 19.2 18.6 0.25
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Weighted-Multiple-Linear-Regression Program (Eng and oth-
ers, 2009). The equations and associated performance metrics
for the simple and full models are reported in table 4 and
table 5, respectively. The average standard errors of predic-
tion, which provide a measure of the predictive ability of a
model, ranged from about 40.5 to 46.5 percent for the simple
equations (table 4) and from about 37.2 to 40.3 percent for the
full-model equations (table 5).

Assessment of Fit

Visual assessments of fit of the regression models
were done by examining scatter plots of observed and pre-
dicted values. The fit of the 0.5 AEP flood full-model equa-
tion (fig. 7) looked reasonable throughout the entire range
of flows; however, the regression estimates have a pattern
of being lower than the 0.01 AEP LPIII-based estimates of
flow (fig. 8) for flows larger than about 50,000 ft*/s. The
set of seven streamgages associated with flows greater than
50,000 ft/s (USGS station numbers 03144500, 03234000,
03234500, 03237500, 03247500, 03270500, and 04193500)
had drainage areas ranging from 387 to 6,309 mi?, came from
all three regression regions, and did not (with one exception)
have other discernable unifying basin characteristics. What
is remarkable about that set of streamgages is that four of the
seven streamgages had drainage areas greater than 2,500 mi*
and those four streamgages had the four largest drainage areas
in the regression dataset. A review of full-model results for

floods with other AEPs indicated that the regression equations
underestimated flows at those same seven streamgages for
floods with AEPs ranging from 0.2 to 0.002 with the percent-
age differences between the LPIII and regression estimates
typically increasing with decreasing AEP. Scatterplots for
the simple-model equations (not shown) were examined and
indicated a bias similar to that observed with the full-model
equations. These results suggest the potential that the regres-
sion equations underestimate floods with AEPs less than 0.5
for drainages more than 2,500 mi* and highlight the need to
weight regression estimates with streamgage-based estimates
whenever possible. The only currently unregulated river that
has locations with drainage areas larger than 2,500 mi? is

the Maumee River (in northwestern Ohio), and all points on
that river with drainage areas larger than 2,500 mi? have a
streamgage in close enough proximity to compute weighted
flood-frequency estimates.

Residuals, the difference between observed and predicted
values of the dependent variable, were examined to ensure that
they did not meaningfully violate the assumptions of normal-
ity, independence, and constant variance. Examples of residual
plots that were created and examined in that assessment are
shown in figures 9—10. In addition, other tests were completed
to look for conditions, such as moderate to strong collinear-
ity in regressor variables that could negatively affect estima-
tion of the regression parameters or their standard errors. No
conditions were identified in the tests that would degrade or
destabilize estimation or invalidate prediction intervals.

Table 4. Simple-model equations for estimating flood-frequency characteristics of rural, unregulated streams in Ohio.

[AEP, annual exceedance probability; pseudo R?, pseudo coefficient of determination; SEP, standard error of prediction; Q, flood peak discharge, in cubic feet
per second; OHREGA and OHREGC are binary regression region codes; DA, drainage area in square miles]

Constant Coefficient Model Average
Recurrence . Average
. _— Pseudo  error  variance of
interval AEP Equation 2 . _ SEP
(years) a b ¢ d R variance prediction (percent)
(62) (V)
2 0.5 1.894 0.159 0.397 0.705 95.39 0.031 0.031 42.40
0.2 2.124 0.182 0410 0.672 9443 0.028 0.029 40.49
10 0.1 2.243 0.197 0418 0.655 94.83 0.030 0.030 41.84
25 0.04 Q= [1Q@HOHREGA[OHREGEN| D 4d D 368 0214 0429 0.639 94.26 0.031 0.032 43.10
50 0.02 2.448 0226 0.438 0.629  93.69 0.033 0.034 44.61
100 0.01 2.518 0.237 0446  0.620 93.37 0.034 0.035 45.20
500 0.002 2.657 0.261 0.466 0.604 92.61 0.035 0.037 46.51

'For manual computations, the terms in brackets in the equation above can be replaced by the following coefficients:

AEP Regression region A Regression region B
0.5 112.870 78.295
0.2 202.416 132.977
0.1 275.548 175.038
0.04 382.469 233.610
0.02 472.189 280.585
0.01 569.494 329.858
0.002 827.547 453.687

Regression region C

195.427
341.680
458.759
627.901
768.952
921.547
1,325.772



Table 5. Full-model equations for estimating flood-frequency characteristics of rural, unregulated streams in Ohio.

[AEP, annual exceedance probability; pseudo R’, pseudo coefficient of determination; SEP, standard error of prediction; Q, flood peak discharge, in cubic feet per second; OHREGA and OHREGC are binary
regression region codes; DA, drainage area in square miles; SL main-channel slope determined by the 10-85 method, in foot per mile; W, percentage of the basin classified in the 1992 National Land Cover
Dataset as open water and wetlands]

10-85°

Constant Coefficient Model Average
Recurrence . Average
. - Pseudo error variance of
interval AEP Equation 2 . A SEP
(years) a b c d e f R variance  prediction (percent)
(02) (vP,)
2 0.5 1.668 0.126 0.326 0.781 0.162 -0.130  95.87 0.027 0.028 40.15
0.2 1.845 0.144 0.320 0.767 0.202 -0.174  96.09 0.024 0.024 37.16
10 0.1 1.939 0.157 0.319 0.760 0.222 -0.197 95.81 0.024 0.025 37.62
25 0.04 Q= [10@POHREGATAOIREGEN D AIS], = <(WHT)F 2.040 0.172 0.321 0.752 0.240 -0.222  95.51 0.024 0.026 38.08
50 0.02 2.106 0.183 0.324 0.748 0.251 -0.238  95.20 0.025 0.027 37.79
100 0.01 2.165 0.194 0.328 0.743 0.259 -0.251  94.90 0.026 0.028 39.60
500 0.002 2.285 0.219 0.340 0.734 0272 -0.277  94.46 0.027 0.028 40.27

'For manual computations, the terms in brackets in the equation above can be replaced by the following coefficients:

AEP Regression region A Regression region B Regression region C
0.5 62.267 46.553 98.542
0.2 97.551 69.945 146.193
0.1 124.558 86.822 181.115
0.04 162.920 109.576 229.548
0.02 194.552 127.520 269.046
0.01 228.645 146.165 311.296
0.002 318.795 192.726 422.053

suonenby uoissaifiay |euoifiay jo yuawdojanag
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Regression estimate of 0.5 annual exceedance probability flood magnitude,

Regression estimate of 0.01 annual exceedance probability flood magnitude,
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Variance of Prediction

WREG computes the variance of prediction (VPrgg) for
each observation used in model development. The VP, fora
given observation 7, is computed as follows:

2 2
VP, =05+0, 6)
where
2 . N
o is the model error variance, and
ol is the sampling error variance for the ith
SV .
observation.

The sampling error variance is computed as follows:
O'j =x,(X"A'X) %] @)

where

X, is a row vector of the regressor variables
associated with the ith observation,
augmented by a value of 1.0 in the first
column;

X is the (n X p) matrix consisting n rows (one

for each observed peak discharge) of the
p-1 regressor variables associated with the
peak discharge augmented by a column of
ones in the first column;

A is the (n by n) covariance matrix associated
with the vector of logarithms of the n
observed peak discharges;

is the covariance matrix for the regression
coefficients; and

are superscripts indicating the transpose and
inverse of the matrices, respectively.

The (X"A™'X)™" matrices for the full model equations are

reported in table 1.8.

(X"A™ X))

Tand !

Computation of Weighted Flood-Frequency
Estimates and Confidence Limits at Gaged Sites

The uncertainty in a flood-frequency estimate can be
reduced by computing a weighted average of the at-site
estimate and the regional-regression estimate. Bulletin 17C

England and others, 2018) describes a weighting method in
which the base-10 logarithms of the regression and at-site
LPIII estimates are weighted inversely proportional to their
respective variances as follows:

Y, VP, +Y VP

_ Usite; reg; reg; site;
L= e ®)
site; + reg;

where

Y is the base-10 logarithm of the weighted
estimate for site 7,

is the base-10 logarithm of the at-site LPIII
estimate for site 7,

site;

VP, is the variance of prediction of the regression
estimate for site i,
Y., is the base-10 logarithm of the regression

estimate for site 7, and
is the variance of prediction of the at-site
estimate for site 7.
Confidence limits for the weighted estimates can be com-
puted as a function of the variance of the weighted estimate
(V, thatis computed as follows:

VP

site;

V})s ite; VB’eg,

‘VM’_—
VP, +VP

site; reg;

)

Once V, has been determined, the upper and lower con-
fidence limits can be computed as follows:

+t‘£ (Vu,- )0.5 }
cr, :10{ o) (10)
Y“’—l o ( )nvs}
crL, :10{ G an
where
CL, .CL, are the upper and lower confidence limits,
respectively, for site 7; and
& ) is Student’s t with a specified alpha (o)
2

level and n—p degrees of freedom, where
n is the number of sites used in the
regression equation and p is the number
of regressor variables plus 1.0. For
95-percent confidence limits, (%.»-p) equals
approximately 1.969 for the full- and
simple-model equations.

Because of the difficulty in computing the sampling error
variance, nearly identical computations to those listed in equa-
tions 8—11 can be used (with reduced accuracy) to compute
weighted estimates and confidence limits for estimates at sites
not used in model development. The only difference is that the
average variance of prediction for the models (V'F,, ) (reported
in table 4 and table 5) are substituted for VP,

reg *

Weighting Flood-Frequency Estimates
at Ungaged Sites with Data for a
Nearby Gage

For unregulated streams, if the drainage area of an
ungaged site is between 50 and 150 percent of the drainage
area of a gaged site on the same stream and flood-frequency
characteristics have been computed for the gaged site, then
the following method of adjusting the estimated flood-peak
discharge of the ungaged site is suggested:
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DA

_2|ADA|(R—1)}

Oyaty = Doy {R

where

R:{M} (13)

Qp-r(g)

and where
O, o) is the weighted flood-peak discharge estimate

with an AEP of p for the gaged site,
reported in table 1;

is the regression estimate of flood-peak
discharge with an AEP of p for the gaged
site, reported in table 1;

is the adjusted flood-peak discharge estimate
with an AEP of p for the ungaged site;

is the regression estimate of flood-peak
discharge with an AEP of p for the
ungaged site;

is the absolute value of the difference in
drainage areas of the gaged and ungaged
sites; and

DA, is the drainage area of the gaged site.

This method gives more weight to the ungaged site’s regres-

sion estimate as the difference in drainage areas between the

gaged and ungaged sites increases, giving full weight to the

regression estimate when the drainage area for the gaging sta-

tion equals 0.5 or 1.5 times the drainage area of the ungaged

site.

An example application of equations 12—13 is provided
in equation 14 for an ungaged site on Mill Creek at Ostrander
Road (in Delaware County, Ohio). In this example, the
0.01 AEP flood discharge is estimated using the 0.01 AEP
regional regression equation listed in table 5 then weighted
with the flood frequency estimates reported for streamflow
gage 03220000 (Mill Creek near Bellepoint, Ohio), down-
stream from the ungaged site. The ungaged site is in regres-
sion region A (meaning OHREGA=1 and OHREGC=0 as
indicated in the “Ordinary Least-Square Regression” section),
and the site is determined with StreamStats to have a drainage
area of 167 mi?, a main-channel slope of 4.83 feet per mile,
and 0.77 percent of the drainage covered by open water and
wetlands as determined from the 1992 National Land Cover
Dataset (Vogelmann and others, 2001). The gage near Bel-
lepoint has a drainage area of 178 mi* (table 1.1) and so the
drainage area at the ungaged site is about 94 percent of the
drainage area at the gaged site, which meets the weighting
criteria that the drainage area at the ungagged site must be
between 50 and 150 percent of the gaged site.

Using the regression equation for the 0.01 AEP flood
discharge in table 5 with the basin characteristics for the
ungaged site, the 0.01 AEP flood estimate is determined to be
13,562 ft¥/s as follows:

Qp,r(g)

Qp,a(u)
Qp,r(u)

|ADA|

(12)

0, — 1()(2-1648+0.1943[OHREGA}+0.3283{ OHREGC)
0.01 —

DA0'7431SL107850-2588 (W + 1)70.2508

(14)

Oy = 10(21648+0.1943(11+032830D 1 (£ 70.7431

.3
4.830%% (077 +1y0% 13 357/

N

The 0.01 AEP flood regression and weighted estimates
for gaging station 03220000 are 14,100 ft*/s and 17,500 ft*/s,
respectively (table 1). All necessary data for computing the
gage-weighted estimate are now available. Apply equation 13
to determine the value of R as follows:

R{M}wﬂ.zm. (15)
Qp,r(g)

14,100
Then, substitute the value of R from equation 15 into equa-
tion 12 as follows:

2|ADA|(R—1)}

Qp‘a(u) = Qp,r(u) {R - DA

(g)
2|178-167|(1.2411-1)
178

:13,357{1.2411—

3
Q,uty = 16,179fL.
N

Rounding O, ., to three significant digits gives a gage-
weighted estimate of 16,200 ft*/s for the 0.01 AEP flood
discharge at the ungaged site.

General Guidelines for Estimating
Flood-Frequency Characteristics at
Sites on Rural, Unregulated Streams

The best method for estimating flood-frequency charac-
teristics for sites on Ohio streams depends on the data avail-
able for the site of interest as follows:

1. Ifastreamgage exists at the site of interest and has 10 or
more years of record, techniques described in Bulletin
17C should be used to compute the flood quantiles.
However, if peak streamflows are unregulated at the
streamgage, the Bulletin 17C estimates should be used to
compute a weighted average with estimates determined
from regional regression equations.

2. If the site of interest is ungaged and is within 50 and 150
percent of the drainage area of a nearby streamgage on
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the same unregulated stream for which flood-frequency
characteristics have been or can be computed, then the
flood-frequency estimates should be determined using
the regional regression equations and then adjusted with
equations 12—13 using data for the gaged site.

3. Ifthe site of interest is ungaged and no streamgages are
nearby on the same unregulated stream, then flood-fre-
quency estimates should be determined with the regional
regression equations.

4. [If the site of interest does not fit into one of the categories
described in items 1-3 for example, the site of interest is
on a regulated stream with no nearby streamgage , then
other methods must be used to estimate flood-frequency
characteristics. The best method to use will depend on
site-specific factors such as available data and resources
and, therefore, cannot be generalized.

Flood-frequency estimates for many streamgages are
available through StreamStats. If the station number is known
for the streamgage, the most recent published characteristics
(if available) can be obtained at https://streamstatsags.cr.usgs.
gov/gagepages/htm1/00000000.htm, where 00000000 is substi-
tuted with the station number for the streamgage; for example,
https://streamstatsags.cr.usgs.gov/gagepages/html/03220000.
htm. Alternatively, streamgages can be identified through the
StreamStats web application and their associated data accessed
by left clicking on the streamgage’s symbol and then left click-
ing on the link next to “StreamStats Gage page” in the window
that pops up.

The full-model regression equations have been imple-
mented in StreamStats (and supporting datasets populated) to
facilitate computations at ungaged locations. For more infor-
mation on StreamStats, see Ries and others (2017).

Limitations

The regression equations presented in this report can be
used to estimate flood-frequency characteristics for streams
in Ohio draining predominantly rural basins that are free of
appreciable high-flow regulation. For the purposes of this
study, regulated records include any records where the peak
streamflows are thought to be substantially altered from what
would be expected for a “natural” stream. In general, basins
having usable storage of less than 103 acre-feet per square
mile are considered to be unregulated; however, the flood-peak
discharges for an ungaged site directly below a large reservoir
could be considered regulated regardless of the usable storage
criterion (Benson, 1962). In addition, basins with extensive
channelization or land modifications, or both, associated with
urbanization, mining, and some agricultural practices may
be considered “regulated” when evaluating applicability of
regression equations presented in this report.

The applicability of the regression equations is unknown
when the basin-characteristic values associated with an

ungaged site are outside a space defined by the basin char-
acteristics associated with the regression dataset (table 3).
Although the regression dataset includes data for streamgages
with drainage areas greater than 2,500 mi?, evidence indi-
cates that the regression equations may underestimate flood
magnitudes on drainages greater than 2,500 mi* for AEPs

less than 0.5. Weighted averages of regression estimates and
streamgage-based estimates should be used whenever pos-
sible, particularly for drainages greater than 2,500 mi®.

In a previous report that presented equations for estimat-
ing flood-peak discharges of rural, unregulated streams in
Ohio, Koltun and others (2006) identified a tendency for the
full-model regression equations to overestimate peak dis-
charges for basins with greater than 0.3 percent of their drain-
age classified as quarries, strip mines, or gravel pits. This same
bias was not evident with the simple equations. The full-model
bias associated with basins with greater than 0.3 percent of
their drainage classified as quarries, strip mines, or gravel pits
was not reevaluated in this study, but the bias is assumed to
persist in this study because the same model form is used.

Flood-frequency characteristics were reported for
selected regulated streamgages. In addition, some streamgages
had sufficient record to compute flood-frequency characteris-
tics for unregulated and regulated periods. The reader is cau-
tioned that regulation can change at any time (thus changing
the flood-frequency characteristics) and that, for streamgages
with unregulated and regulated record, the regulated flood-
frequency characteristics reflect the more recent of the two
periods for that streamgage.

Flood-frequency estimates for streamgages outside of
Ohio are reported for informational purposes and are not
intended to supersede non-Ohio state-specific sources of flood-
frequency information.

Summary

Estimates of the magnitudes of peak streamflows with
annual exceedance probabilities of 0.5, 0.2, 0.1, 0.04, 0.02,
0.01, and 0.002 (equivalent to recurrence intervals of 2-,

5-, 10-, 25-, 50-, 100-, and 500-years, respectively) were
computed for 391 streamgages in Ohio and adjacent states,
based on data collected through the 2015 water year (end-
ing September 30, 2015). Of the 391 streamgages, 333 had
10 or more years of unregulated record. The flood-frequency
estimates were computed following guidance outlined in
Bulletin 17C and made use of a new regional skew value to
compute weighted measures of skewness. Separate analyses
also were done to estimate flood-frequency characteristics of
82 streamgages with 10 or more years of regulated record col-
lected through the 2015 water year. The analyses of regulated
records were based on measures of skewness at each site.

Two sets of regression models, referred to as simple and
full models, were developed for rural, unregulated streams
to facilitate estimation of the magnitudes of annual peak



streamflows with annual exceedance probabilities of 0.5, 0.2,
0.1, 0.04, 0.02, 0.01, and 0.002. Models were developed with a
two-step process involving ordinary-least squares and general-
ized-least squares regression techniques. Both the simple and
full models contain two binary indicator variables representing
the regression region in which the basin is located. In addi-
tion, the simple model contains a drainage area variable; and
the full model contains variables describing the drainage area,
main-channel slope, and the percentage of the basin in three
land-cover categories representing open-water and wetland
areas. The average standard errors of prediction ranged from
about 40.5 to 46.5 percent for the simple-model equations and
from about 37.2 to 40.3 percent for the full-model equations.

An assessment of fit indicated that the regression equa-
tions tended to underestimate flood magnitudes with annual
exceedance probabilities less than 0.5 for drainages larger
than 2,500 mi?. This information indicates that regression
estimates should be weighted with streamgage-based estimates
whenever possible. The full-model regression equations have
been implemented in StreamStats to facilitate computations at
ungaged locations within Ohio.

Seasonal patterns in annual peak and peak-of-record
flows were assessed. A frequency analysis was done on
unregulated annual peak flows observed at 295 streamgages in
Ohio through the 2015 water year. Annual peak flows occurred
most frequently in the 4-month period between January and
April, with March having the highest frequency of occur-
rence. The month with the fewest number of annual peaks was
October. The largest recorded annual peaks (peak-of-record
flows) at the 295 streamgages occurred most frequently in
March, followed by January. March and January coincide with
months in which two of Ohio’s most severe widespread floods
in recent history (the March 1913 and January 1959 floods)
occurred. June and July ranked third and fourth with respect
to the frequency of peak-of-record flows. None of the peak-
of-record flows occurred in October and only two occurred in
November.

Annual peak-flow data for 133 streamgages on unregu-
lated streams in Ohio with 30 or more years of systematic
record through the 2015 water year were analyzed for long-
term trends by computing the rank correlation (as mea-
sured with the two-sided Kendall’s tau statistic) between
time and annual peak flows. Weak but statistically signifi-
cant trends were indicated at 15 (about 11 percent) of the
133 streamgages. Of the 15 streamgages with significant trend,
12 had positive tau values (indicating an upward trend in
annual peak flows) and 3 had negative tau values (indicating a
downward trend). All 12 streamgages with positive tau values
were at latitudes north of 40°33', and streamgages with nega-
tive tau values were at latitudes south of 40°33".
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	Figure 4. Locations of unregulated streamgages for which flood-frequency characteristics were determined in this study. 
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	Figure 5. Locations of regulated streamgages for which flood-frequency characteristics were determined in this study. 
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	Figure 6. Locations of streamgages with 30 or more years of peak-flow record that had statistically significant correlations between the magnitudes of peak flow and time. 
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	Table 4. Simple-model equations for estimating flood-frequency characteristics of rural, unregulated streams in Ohio. 
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	Model error variance (2 )
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	2 
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	0.5 
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	0.031 
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	0.182 
	0.410 
	0.672 
	94.43 
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	0.027 
	0.028 
	40.15 

	5 
	5 
	0.2 
	1.845 
	0.144 
	0.320 
	0.767 
	0.202 
	 
	96.09 
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