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Flood-Frequency Estimates for Ohio Streamgages Based 
on Data through Water Year 2015 and Techniques for 
Estimating Flood-Frequency Characteristics of Rural, 
Unregulated Ohio Streams 

By G.F. Koltun 

Abstract 

 
 

0.02, 0.01, and 0.002 (equivalent to recurrence intervals of 

 
computed for 391 streamgages in Ohio and adjacent states 

 
 

outlined in Bulletin 17C, developed by the Advisory Commit-

 
 

 
enhancements including an improved method of moments 

-

-

 
-

 
 

 
 
 

squares and generalized least-squares regression techniques. 

-

 
 

and basin-characteristic data for 275 streamgages in Ohio and 

 
set, referred to as the “simple model,” uses regression region 

and drainage area as regressor variables, and a second set, 

referred to as the “full model,” uses regression region, drain-

-

 
 

about 40.5 to 46.5 percent for the simple-model equations 

and from about 37.2 to 40.3 percent for the full-model 

 
 

 
 

limits are reported for all estimates. 

 
digital spatial datasets by means of a geographic information 

-

tions have been incorporated into Ohio’s StreamStats applica-

 
 

streams. 

 
 

 
 

 
-

 
 

 
 
 

 
 

 
 

 
 

 
 

equations. For sites meeting the rural, unregulated criteria, latitudes south of 40°33'. 



             

   

 

  

2 Flood-Frequency Estimates for Ohio Streamgages Based on Data through Water Year 2015 

Introduction 

 
-

 
“frequency” results from a common interpretation of the recip-

 
  

on average, once every 100 years (and consequently is called 

-

quency concept easier to grasp than the probability concept, to 

understand that the frequency concept is based on a long-term 

 
 
 

-

 
 

 
 

 
respectively. 

 
data are used in the design of bridges, culverts, dams, and 

 
-

 
 

 
Ultimately, decisions made on the basis of these data can have 

 
 

life and death. 

 
 

 
 
-

 
 

 
 
 
 
 

-

 
considering the economic and safety-related importance of 

 
 

 
 
 

Description of Study Area 

-

 
2  

2 of that area covered by perennial 

 
 

 
 

by forest (28.5 percent) and developed (13.5 percent) land 

covers. According to Sanders (2001), Ohio has more than 

60,000 miles of streams. 

 
 

Overall topographic relief across the State of Ohio is benign 

 
 

orographic enhancement or depletion of rainfall is not a major 

factor in Ohio. 

Ohio has a humid continental climate characterized 

by large seasonal temperature changes and generally ample 

precipitation derived from frontal and convective storms. 

-

 
 

-

tion, 2018). By comparison, the average annual temperatures 

and rainfall totals for Ohio for the 30-year period from 1985 to 

-

 
 

-

 
 

 
 

 
making Ohio the seventh most populated State in the United 

States. According to the U.S. Census Bureau (2018c), (as of 

 
 

Purpose and Scope 

 
  

selected streamgages in Ohio and adjacent states based on data 

  
 

rural, unregulated streams in Ohio; and (3) implement the 

estimation techniques in the Ohio StreamStats application. 

 
-
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Figure 1. Study area showing regression regions. 



             

 

    

     
 

4 Flood-Frequency Estimates for Ohio Streamgages Based on Data through Water Year 2015 

-

quency characteristics of rural, unregulated streams in Ohio. 

Previous Investigations 

 
been tabulated and methods have been presented for esti-

 
streams in Ohio (Cross, 1946; Cross and Webber, 1959; Cross 

-

 
most recent of those reports (Koltun and others, 2006) marked 

-

Stats to compute values of regressor variables and subsequent 

 

Seasonal Patterns of Peak Flows 

 
 

common in some months than others. Based on a frequency 

 
 

 
(59.7 percent of the observations) in the 4-month period 

-
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Figure 2. Frequency of occurrence of annual peak flows by 

month. 

A frequency analysis of the largest recorded annual peak 

 
-

 
 

 
 

third (13.6 percent of observations) and fourth (11.9 percent of 

 
 

 
 

 
 

 
drainage areas less than 20 mi2 and the other class represent-

2  
 

 
basins by summer-time convective storms that can produce 

 
the smaller basins tend to be more recent additions to the gage 

 
earlier than the 1940s (and so their records do not include the 

 

Magnitude and Frequency of Floods at 
Gaged Sites 

 
Although, this report is focused on Ohio, data from a total of 

 
 

-

 
 

 

-

tion such as operation of dams, but also can occur because of 

less obvious factors such as urbanization, channelization, and 

 

 
descriptions and other supporting documentation contained 

 
 

 
 



         

 

 

 

 

5Magnitude and Frequency of Floods at Gaged Sites 
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by regulation or diversion), and C (indicating all or part of 

 
-

 

 
 

 
maintained in a database and are publicly available online at 

 
(U.S. Geological Survey, 2018). 

 
 

 
 
 

 
 

 
-

lated and unregulated record. Of the 82 streamgages, 5 did not 

 
 

 
-

-

 

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 

Month 

EXPLANATION 

[Number of streamgages is 295; 

108 are less than 20 square miles and 

187 are greater than 20 square miles]

 Streamgages with drainage areas 
greater than 20 square miles 

Streamgages with drainage areas 
less than 20 square miles 

Figure 3. Frequency of 

occurrence of peak-of-record 

flows, by month, for streamgages 

with drainage areas greater than 

and less than 20 square miles. 

methodology described in Bulletin 17C (England and others, 

 
-

 
 

•  

 
[Cohn and others, 1997]) that can accommodate inter-

 
 

•  
(called the Multiple Grubbs Beck test [Cohn and 

 

• -

 

Systematic data are distinguished from historical data in 

 
as part of the systematic operation of a streamgage are called 

 
  

  
 

 -
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8 Flood-Frequency Estimates for Ohio Streamgages Based on Data through Water Year 2015 

-

 
the streamgage. 

-

 
-

 

^ 

Q p = X + K Sp (1) 

 ^ 

Q p is estimated P  
foot per second (ft3 P equals the 

 
 

X is the mean of the logarithms of the annual 

 
K
P  

 
 

S is the standard deviation of the log-

 

Regional Skew 

 
 

 
 

 
 

MSE (G) + MSE (G)
G
W = G G (2) 

MSE + MSE 
G G 

 
G
W  

MSE 
G 

 
G  

MSE  
G 

and 

G  
Under Bulletin 17B guidelines (Interagency Advisory 

-

 
 
 

 
 

05 (including parts of Illinois, Indiana, Kentucky, Michigan, 

 
 

 
 

 
-

 
-

 
 
 
 

 
 

of 0.3606. 

 
-

 
 

 
 

 
 

analysis-related characteristics of the unregulated and regu-

lated streamgage records are listed in table 1.3 and table 1.4, 

respectively. Flood-frequency estimates for unregulated and 

regulated records are reported in table 1 and table 2 (available 

), respec-

tively. Flood-frequency estimates are reported for regulated 

 
 

reader should be mindful that changes in regulation subse-

quent to the period of analysis could appreciably change the 

 

Flow Intervals and Perception Thresholds 

 
the historical period (including gaps in the systematic record), 

 
 

 
 

 
interval. 

-

rithm technique also requires that a perception threshold be 

 
 

had occurred. Generally, for the systematic record, the range 

 
the period of systematic data collection). At some streamgages 

 



         

     

      

 

     

 

9 Magnitude and Frequency of Floods at Gaged Sites 

 
 

 
 

 
 
 

 
 

 
 

of a perception threshold. Because the observation of opportu-

-

 
 

 
-

-

 
 

of unregulated and regulated streamgage records are reported 

 
 

 

Tests for Potentially Influential Low Floods 

 

 

 

 
 

 
 
 

frequency distribution and the high end of the estimated 

 
 
 

analyses of unregulated and regulated streamgage records are 

reported in table 1.3 and table 1.4. 

Tests for Temporal Trends in Flood Magnitudes 

-

lated data from 333 streamgages in Ohio and adjacent states 

 
temporal trends by computing Kendall’s tau, a nonparamet-

 

 
homogeneous events (Interagency Advisory Committee on 

 
p-values. 

 
 

p-values indicate 

the probability that tau is equal to zero. A Kendall’s tau of 

 
 

indicates no trend. 

 
 p-value 

 
 

 
 

 
 

the largest absolute tau values all had short records (averag-

 
 
 

 
 
 

-

-

 
 
 
 

values and their associated p-values are reported in table 1.3 

and table 1.4 for the unregulated and regulated streamgage 

records, respectively. 

Long-Term Trends in Annual Peak Flows 

-

 
 

long-term trends by computing Kendall’s tau (as previously 

 
 

spurious trends resulting from an unrepresentative sampling 

period. Fifteen of the 133 tau values (about 11 percent) had 

associated p-values less than or equal to 0.05, indicating 

-

 
 
 

ranged from -0.317 to 0.246, indicating the trends (although 

 

 



             

   

  

 

  

  

  

  

  

  

  

  

 

10 Flood-Frequency Estimates for Ohio Streamgages Based on Data through Water Year 2015 

 
 

 
  

Development of Regional Regression 
Equations 

 
 

 
 

-

 
 

 
 
 

the model error. 

 
 

-

ing basin characteristics to peak discharge estimates for each 

 
 
 

 
identify streamgages that provided potentially redundant infor-

mation. A model archive of the regression analyses is available 

in Koltun (2019b). 

Tests for Redundancy 

 
nearly the same information to a regression model, the 

streamgages are said to provide redundant information. Instead 

 
 
 

 
 

some streamgages provide redundant information, a statistical 

analysis using the redundant observations incorrectly repre-

sents the information content in the regional dataset (Gru-

 
 

   
basins centroids and (2) the ratios of the basin drainage areas. 

 
likelihood that the streamgages provide redundant informa-

 i 
and j), SD 

ij
 

D 
SD

ij = ij 
(3)

0 5. (DA
i + DA

j ) 

 
D

ij 
 

basin i and basin j; 

DA
i 

is the drainage area in square miles at site i; 

and 

DA
j 

is the drainage area in square miles at site j. 

 
 
 

conclude that the streamgages may provide redundant infor-

mation for the purposes of developing a regional hydrologic 

model. 

DAR  

( log(DA /DA ) ) i jDAR e (4) 

 
DA

i 
is the drainage area at site i, and 

DA
j 

is the drainage area at site j. 

 
indicate that screening thresholds of standardized distance 

 
less than or equal to 5 are appropriate for identifying sites 

 
-

 
 

the redundancy analysis. All streamgage pairs meeting the 

-

 
 

or more years of unregulated record, 56 (about 17 percent) 

-

 
the regression dataset for other reasons, leaving a regression 

 
 

 
median value of 26 annual peaks. 

Ordinary Least-Square Regression 

Koltun (2003) previously tested 20 basin characteristics 

 
 

) (described 

 
-
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between the magnitudes of peak flow and time. 



             

 

 

 

 

 

 

12 Flood-Frequency Estimates for Ohio Streamgages Based on Data through Water Year 2015 

 
 

 
 

 
 

 
 
 
 

Region OHREGA OHREGC 

A 1 0 

B 0 0 

C 0 1 

Streamgages in border states that are on streams that do not 

 
 

For streamgages in Ohio, the drainage areas and main-

 
application (Koltun and others, 2006). For streamgages 

outside Ohio, the drainage areas and main-channel slopes 

 
 

 
-

 
2017), or publications. 

 
 

-

 
 

W (the percentage of the basin classi-

 
 

 
W 

 
 

to the period of record at long-term gaging stations than a later 

measure of W). 

 
 LC11IMP, the percentage of impervious area deter-

 
others, 2015) and (2) LC11DEV, the percentage of developed 

 
 

10
 

to the value of LC11IMP, LC11DEV, and W before log trans-

 
or more years of unregulated record are listed in table 1.1. 

 
 

•  
 

 
other criteria. 

•  
 

•  
 
-

R2, a measure of the 

proportion of the variation in the dependent variable 

accounted for by the regression equation after remov-

 
Stedinger, 2007]). 

 LC11IMP and LC11DEV) 

-

cance of LC11IMP  
275 streamgages (including all of the Ohio streamgages) in 

the regression dataset, because that characteristic could be 

 
tests for LC11IMP  
indicated by a p-value less than or equal to 0.05) or near 

p-value less than or 

 
determined for the remaining 14 streamgages and retested. 

Although neither LC11IMP nor LC11DEV  

 
Because LC11IMP and LC11DEV  

circa 2011, they are not necessarily indicative of the level 

 
LC11IMP and LC11DEV 

values that indicate a high percentage of impervious area and 

 
that streamgage may have ended in the 1980s. In that case, 

urbanization may not have been an issue during the period of 

record. 

 
03115973, 03226850, 03228000, 03262750, and 03263100) 

 
 

streamgages had high LC11IMP (greater than 30 percent) 

and LC11DEV (greater than 80 percent) values, and no clear 

evidence indicated that the level of urbanization during the 

 
 

Ultimately, the regressor variables used in the equations 

reported by Koltun and others (2006) proved to be statistically 

 
estimates determined for this study. Consequently, those 

 
 

unregulated streamgages discussed in this report are listed in 



      

  

  

  

  

 

13 Development of Regional Regression Equations 

table 1.1. Summary statistics of the regressor variables for the 
é ùdij 
ê 

êë 

ú 

úû
(5)275 streamgages in the regression dataset are listed in table 3. ^ 

d +1ij a 

q=rij 

 
^Generalized Least-Squares Regression 
rij is the estimated linear cross-correlation of the 

 

 

sites i and j, 

 i and j,d 
ij 

 
only the regression region codes and drainage area as regres-

 
 

the “full model” equations, and the equations that use only 

 
referred to as the “simple model” equations. 

-

 
-

ation the variance and spatial correlation structure of the peak 

 
others, 1986). In addition, the time-sampling error in the esti-

 
 

 
 

 
 
-

 
 

and 

 and  are dimensionless parameters. 

 
 
 

-

 
minimum number of concurrent years of record (a minimum 

 
 

line representing the correlation-smoothing function (eq. 5) 

 
 and  

 
 
 

 of 0.002 and  
 

function. 

 
 

 
 

Table 3. Summary statistics of regressor variables in the regression calibration dataset. 

[DA, drainage area; mi2, square mile; SL W  
10–85 

 

Region 

A 

Statistic 

 

DA (mi2) 

5,989 

Regressor variable 

SL  (ft/mi) 
10–85 

516 

W (percent) 

25.35 

Number of 

observations 

175 

Minimum 0.04 1.53 0.00 

Mean 195 48.2 2.31 

Median 39.2 13.2 0.79 

B  6,309 457 7.10 68 

Minimum 0.04 1.21 0.00 

Mean 242 25.2 1.44 

Median 38.3 8.20 1.04 

C  2,514 131 1.23 32 

Minimum 0.26 3.24 0.00 

Mean 170 37.1 0.33 

Median 19.2 18.6 0.25 
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-

 
for the simple and full models are reported in table 4 and 

-

 
model, ranged from about 40.5 to 46.5 percent for the simple 

equations (table 4) and from about 37.2 to 40.3 percent for the 

full-model equations (table 5). 

Assessment of Fit 

 
-

-

 

3  
 

50,000 ft3/s (USGS station numbers 03144500, 03234000, 

03234500, 03237500, 03247500, 03270500, and 04193500) 

had drainage areas ranging from 387 to 6,309 mi2, came from 

 
have other discernable unifying basin characteristics. What 

is remarkable about that set of streamgages is that four of the 

seven streamgages had drainage areas greater than 2,500 mi2, 

and those four streamgages had the four largest drainage areas 

 

 
-

 
 

 
 
-

 
for drainages more than 2,500 mi2 and highlight the need to 

 
 

2 is 

 
2 have a 

 
 
 

they did not meaningfully violate the assumptions of normal-

 
 

 
to look for conditions, such as moderate to strong collinear-

-

 
 

destabilize estimation or invalidate prediction intervals. 

Table 4. Simple-model equations for estimating flood-frequency characteristics of rural, unregulated streams in Ohio. 

R2  
per second; OHREGA and OHREGC are binary regression region codes; DA, drainage area in square miles] 

Recurrence 

interval 

(years) 

AEP Equation1 

Constant 

a b 

Coefficient 

c d 

Pseudo 
2

R 

Model 

error 

variance 

( 2 )

Average 

variance of 

prediction 

(VP )
avg

Average 

SEP 

(percent) 

2 0.5 1.894 0.159 0.397 0.705 95.39 0.031 0.031 42.40 

5 0.2 2.124 0.182 0.410 0.672 94.43 0.028 0.029 40.49 

10 0.1 2.243 0.197 0.418 0.655 94.83 0.030 0.030 41.84 

25 0.04 (a+b[OHREGA]+c[OHREGC])]DAd 2.368 0.214 0.429 0.639 94.26 0.031 0.032 43.10 

50 0.02 2.448 0.226 0.438 0.629 93.69 0.033 0.034 44.61 

100 0.01 2.518 0.237 0.446 0.620 93.37 0.034 0.035 45.20 

500 0.002 2.657 0.261 0.466 0.604 92.61 0.035 0.037 46.51 

1  

      
0.5          112.870 78.295  195.427 

0.2 202.416 132.977  341.680 

0.1 275.548 175.038  458.759 

0.04  382.469 233.610  627.901 

0.02  472.189 280.585  768.952 

0.01  569.494 329.858  921.547 

0.002 827.547 453.687  1,325.772 



 
 

 
 

 
 

 

 

 

    

    

    

    

  

  

  

  

15 
Table 5. Full-model equations for estimating flood-frequency characteristics of rural, unregulated streams in Ohio. 

R2 OHREGA and OHREGC are binary 

regression region codes; DA, drainage area in square miles; SL W  
10–85 

 

Recurrence 

interval 

(years) 

AEP Equation1 

Constant 

a b c 

Coefficient 

d e f 

Pseudo 
2

R 

Model 

error 

variance 

( 2 )

Average 

variance of 

prediction 

(VP )
avg

Average 

SEP 

(percent) 

2 0.5 1.668 0.126 0.326 0.781 0.162  95.87 0.027 0.028 40.15 

5 0.2 1.845 0.144 0.320 0.767 0.202  96.09 0.024 0.024 37.16 

10 0.1 1.939 0.157 0.319 0.760 0.222  95.81 0.024 0.025 37.62 

25 0.04 (a+b[OHREGA]+c[OHREGC])]DAdSL e(W+1)f 

10–85 
2.040 0.172 0.321 0.752 0.240  95.51 0.024 0.026 38.08 

50 0.02 2.106 0.183 0.324 0.748 0.251  95.20 0.025 0.027 37.79 

100 0.01 2.165 0.194 0.328 0.743 0.259  94.90 0.026 0.028 39.60 

500 0.002 2.285 0.219 0.340 0.734 0.272  94.46 0.027 0.028 40.27 

1  

      
0.5  62.267 46.553 98.542 

0.2  97.551 69.945 146.193 

0.1  124.558 86.822          181.115 

0.04 162.920 109.576 229.548 

0.02 194.552 127.520 269.046 

0.01 228.645 146.165          311.296 

0.002 318.795 192.726 422.053 
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Variance of Prediction 

 VP ) for 

VP 
reg

 for a 

given observation i  
reg 

VP =s 2 
+s 2 (6)

reg d si i 

 
s
d 
2 

is the model error variance, and 

is the sampling error variance for the ith  2 

si 
observation. 

 

2 T -1 -1 T 
s = x (X L X ) x (7)
s i ii 

 
x
i  

 
 

column; 

X is the (n p n  
for each observed peak discharge) of the 

p  
peak discharge augmented by a column of 

 
 is the (n by n  

n 

observed peak discharges; 
T -1 -1(X L X )  

 
T and -1 are superscripts indicating the transpose and 

inverse of the matrices, respectively. 
T -1 -1 (X L X )  matrices for the full model equations are 

reported in table 1.8. 

Computation of Weighted Flood-Frequency 
Estimates and Confidence Limits at Gaged Sites 

 
 

estimate and the regional-regression estimate. Bulletin 17C 

 
 

 
 

Y VP + Y VP 
site reg reg site i i i iY = (8)

iw 
VP +VP 

site reg i i 

 
Y  
wi 

estimate for site i, 

Y 
sitei 

estimate for site i, 

VP 
regi 

is the variance of prediction of the regression 

estimate for site i, 

Y
regi 

is the base-10 logarithm of the regression 

estimate for site i, and 

VP is the variance of prediction of the at-site 
sitei 

estimate for site i. 

-

 
(Vwi  

VP VP 
site reg 

V
w = i i (9)
i VP +VP 

site reg i i 

Once Vw -
i 

 

é ù0 5. 
êYwi 

+t 
a (Vwi ) ú 

ê ( ,n- p ) ú (10)
ë 2 ûCL

U =10 i 

é ù0 5. 
êY -t 

a (Vwi ) ú 

ê 
wi ( ,n- p ) ú

ë 2 û (11) 
CL

L =10 i 

 
CL

U ,CLL i i 

respectively, for site i; and 
t 
a  ( ,n- p) 
2 

level and n p  
n is the number of sites used in the 

regression equation and p is the number 

of regressor variables plus 1.0. For 
a 
t 
( ,n- p) equals
2

 
simple-model equations. 

 
variance, nearly identical computations to those listed in equa-

 
 
 

average variance of prediction for the models (VP 
avg ) (reported 

in table 4 and table 5) are substituted for VP 
reg . 

Weighting Flood-Frequency Estimates 
at Ungaged Sites with Data for a 
Nearby Gage 

For unregulated streams, if the drainage area of an 

 
 

characteristics have been computed for the gaged site, then 
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(2 1648 . [ ]). +0 1943. [OHREGA]+0 3283 OHREGC
(R -1) ù Q0 01 = 10é 2 DDA 

Q = Q êR - ú (12) 
. 

p,a(u ) p,r (u ) 0.7431 . -0 25080 2588 .DA DA SL (W +1)ê úë ( g ) û 10-85 

 (14) 

2 1648+0 1943 1. [ ]+ . [ ]) 0 7431( . 0 3283 0 .
Q0 01 = 10 167 .

é ùQ 3p,w( g ) (13) 0 2588 -0 2508 ft 
4 83 . .ê

êë 

ú

úû 

R = 
0 77 1)( . 13,357+ =Q . . 

p,r ( g ) s 

 
Q  p,w( g ) 

p for the gaged site, 

reported in table 1; 

Q 
p,r (g ) 

p for the gaged 

site, reported in table 1; 

 
for gaging station 03220000 are 14,100 ft3/s and 17,500 ft3/s, 

respectively (table 1). All necessary data for computing the 

 
to determine the value of R  

Q é ùQ 17,500 
==

( ) ( )p,a u p,w g 
.1 2411. (15)ê

êë 

ú

úû 

Rp for the ungaged site; = 
,14 100Q

p,r (g ) 
Q
p r, (u ) 

 
p for the 

ungaged site; 
DA  

drainage areas of the gaged and ungaged 

sites; and 

DA( g ) is the drainage area of the gaged site. 

-

 
 
-

tion equals 0.5 or 1.5 times the drainage area of the ungaged 

site. 

 
in equation 14 for an ungaged site on Mill Creek at Ostrander 

 
 
 

-

-

sion region A (meaning OHREGA OHREGC  
 
 

area of 167 mi2, a main-channel slope of 4.83 feet per mile, 

 
 

-

lepoint has a drainage area of 178 mi2 (table 1.1) and so the 

drainage area at the ungaged site is about 94 percent of the 

 
criteria that the drainage area at the ungagged site must be 

 
 

 
 

13,562 ft3  

R from equation 15 into equa-

 

é 2 DDA (R -1) ù 
= R - ú 

ë 
DA( g ûú 

Q
p,a(u ) Q

p,r (u ) ê 

ê ) 

é 2 178 -1671 1 2411-1) ù( . 
, . -=13 357 1 2411ê ú 

178ë û 

ft
3 

Q 16 179 .= ,
p,a(u ) 

s 

 Qp,a(u )  
3  

discharge at the ungaged site. 

General Guidelines for Estimating 
Flood-Frequency Characteristics at 
Sites on Rural, Unregulated Streams 

-

teristics for sites on Ohio streams depends on the data avail-

 

1.  
more years of record, techniques described in Bulletin 

 
 

streamgage, the Bulletin 17C estimates should be used to 

 
from regional regression equations. 

2.  
percent of the drainage area of a nearby streamgage on 
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characteristics have been or can be computed, then the 

 
 

 

3. If the site of interest is ungaged and no streamgages are 

-

 
regression equations. 

4.  
  

  
 

 
   

and, therefore, cannot be generalized. 

Flood-frequency estimates for many streamgages are 

 
for the streamgage, the most recent published characteristics 

 
-

 
 

htm  
 

by left clicking on the streamgage’s symbol and then left click-

 
that pops up. 

-

mented in StreamStats (and supporting datasets populated) to 

facilitate computations at ungaged locations. For more infor-

 

Limitations 

 
 

in Ohio draining predominantly rural basins that are free of 

 
 

 
 

having usable storage of less than 103 acre-feet per square 

 
 

could be considered regulated regardless of the usable storage 

 
 

urbanization, mining, and some agricultural practices may 

 
regression equations presented in this report. 

 
 

-

 
Although the regression dataset includes data for streamgages 

2, evidence indi-

 
magnitudes on drainages greater than 2,500 mi2  
less than 0.5. Weighted averages of regression estimates and 

-

sible, particularly for drainages greater than 2,500 mi2. 

In a previous report that presented equations for estimat-

 
 

full-model regression equations to overestimate peak dis-

-

 
 

 
 

 
persist in this study because the same model form is used. 

 
selected regulated streamgages. In addition, some streamgages 

-

-

tioned that regulation can change at any time (thus changing 

 
 
 

periods for that streamgage. 

Flood-frequency estimates for streamgages outside of 

Ohio are reported for informational purposes and are not 

 
frequency information. 

Summary 

 
 

0.01, and 0.002 (equivalent to recurrence intervals of 2-, 

 
computed for 391 streamgages in Ohio and adjacent states, 

-

ing September 30, 2015). Of the 391 streamgages, 333 had 

 
 

 
 
 
-

 
 

 
 

to facilitate estimation of the magnitudes of annual peak 
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25 Appendix 1 

Appendix 1 

These tables are available for download at https://doi.org/10.3133/sir20195018 

Table 1.1 Basin characteristics of streamgages with 10 or more years of unregulated record. 

Table 1.2 Basin characteristics of streamgages with 10 or more years of regulated record. 

Table 1.3 Selected flood-frequency-analysis-related characteristics for unregulated streamgages. 

Table 1.4 Selected flood-frequency-analysis-related characteristics for regulated streamgages. 

Table 1.5 Nondefault flow intervals for unregulated streamgages. 

Table 1.6 Perception thresholds for unregulated streamgages. 

Table 1.7 Perception thresholds for regulated streamgages. 

Table 1.8 Covariance matrices for regression coefficients [(X T -1X )-1] in the full model equations. 

https://doi.org/10.3133/sir20195018
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For additional information visit: 
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	Figure 4. Locations of unregulated streamgages for which flood-frequency characteristics were determined in this study. 
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	Figure 5. Locations of regulated streamgages for which flood-frequency characteristics were determined in this study. 
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	Figure 6. Locations of streamgages with 30 or more years of peak-flow record that had statistically significant correlations between the magnitudes of peak flow and time. 
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	Table 3. Summary statistics of regressor variables in the regression calibration dataset. 
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	Table 4. Simple-model equations for estimating flood-frequency characteristics of rural, unregulated streams in Ohio. 
	R per second; OHREGA and OHREGC are binary regression region codes; DA, drainage area in square miles] 
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	Recurrence interval (years) 
	Recurrence interval (years) 
	Recurrence interval (years) 
	AEP 
	Equation1 
	Constant a 
	b 
	Coefficient c 
	d 
	Pseudo 2R 
	Model error variance (2 )
	Average variance of prediction (VP )avg
	Average SEP (percent) 

	2 
	2 
	0.5 
	1.894 
	0.159 
	0.397 
	0.705 
	95.39 
	0.031 
	0.031 
	42.40 

	5 
	5 
	0.2 
	2.124 
	0.182 
	0.410 
	0.672 
	94.43 
	0.028 
	0.029 
	40.49 

	10 
	10 
	0.1 
	2.243 
	0.197 
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	94.83 
	0.030 
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	25 
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	 1,325.772 
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